LCF: Ab-initio Nuclear Structure Computations

David J. Dean Physics Division, ORNL

"Given a lump of nuclear material, what are its properties, and how does it interact?"

How are we going to describe nuclei that we cannot measure?

- → Robust and predictive nuclear theory for structure and reactions
- → Need for nuclear data to constrain theory
- → We are after the Hamiltonian
 - **→**bare intra-nucleon Hamiltonian
 - →energy density functional
- → Mission Relevance: NP, NNSA, GNEP

3 2001 Sampson Yee

Pushing the nuclear boundaries

Nuclear DFT effort

The LCF effort will:

- Enlarge the ab-initio square
- Enable initial global DFT calculations with restored symmetries.
- Explore thermal nuclear properties in the mass 80-150 region.

ALL REGIONS: Nuclear cross section efforts (NNSA, RIA, Nuclear Energy)

Nuclear Coupled Cluster effort

01 Sampson Yee

Nuclear interactions

Nasty, spin and isospin dependent 2-body forces

$$H = \sum_{i=1,A} \frac{-\hbar^2}{2M_i} \nabla_i^2 + \sum_{i < j} V(r_i, r_j) + V_{NNN}$$

Solved up to mass 12 with GFMC, converged mass 8 with diagonalization. We want to go much further!

$$H|\Psi\rangle = E|\Psi\rangle$$

Real three-body interactions

Coupled Cluster Theory: ab initio in medium mass nuclei

$$|\Psi\rangle = \exp(T)|\Phi\rangle$$

Correlated Ground-State wave function

Correlation operator

Reference Slater determinant

$$T = T_1 + T_2 + T_3 + \cdots$$

$$T_1 = \sum_{\substack{i < \varepsilon_f \\ a > \varepsilon_f}} t_{ai} a_a^+ a_i$$

$$T_{2} = \sum_{\substack{ij < \varepsilon_{f} \\ ab > \varepsilon_{\ell}}} t_{abij} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}$$

Energy

$$E = \langle \Phi | \exp(-T)H \exp(T) | \Phi \rangle$$

Amplitude equations

$$\langle \Phi_{ij\cdots}^{ab\cdots} | \exp(-T)H \exp(T) | \Phi \rangle = \langle \Phi_{ij\cdots}^{ab\cdots} | \overline{H} | \Phi \rangle = 0$$

- Boils down to a set of coupled, nonlinear algebraic equations
- Storage of both amplitudes and interactions is an issue as we scale up.
- Largest problem so far: 40Ca with 2 million unknowns, 7 peta-ops to solve once (up to 10 runs per publishable result)
- Breakthrough science: inclusion of 3-body force into CC formalism (6d tensor)

n Yee

Coupled cluster theory: ab initio in heavier nuclei

The effect of 3-body clusters on states.

- Collaborations with P. Piecuch (MSU)
- Implemented CR-CCSD(T) for the nuclear problem.
- Calculated excited states with EOMCCSD and CR-EOMCCSD(T)
- Calculated A+/-1 systems.

RESULTS:

- Excited state is high with the two-body force alone (lack of good 'l-splitting').
- Triples amplitudes are small and have little effect on states
- Different forces yield different spin-orbit splittings.
- Some further oscillater dependence in A+/-1 systems than in A.

Dean & Hjorth-Jensen, PRC69, 054320 (2004); Kowalski, Dean, Hjorth-Jensen, Papenbrock, Piecuch, PRL92, 132501 (2004); Wloch, Dean, Gour, Hjorth-Jensen, Papenbrock, Piecuch, PRL94, 21501 (2005); Gour, Piecuch, Wloc, Hjorth-Jensen, Dean submitted to PRC (2005).

Self-consistent mean field theory: Nuclear DFT

Major Involvement: Nazarewicz, Stoitsov, Skalski, Borycki, Nikolov

Basic Points:

- General nuclear energy density functional that allows proton-neutron couplings
- First fully self-consistent QRPA+HFB
- Development of formalism for exact particle number projection before variation
- Mass tables produced in parallel.

Future plans:

- Implement exact particle number projection before variation
- Improvement of the density dependence of the effective interaction
- Proper treatment of time-odd fields
- Inclusion of dynamical zero-point fluctuations
- Provide proper continuum basis for QRPA calculations

Stoitsov, Dobaczewski, Nazarewicz, Pittel, Dean, PRC68, 054312 (2003); Terasaki, Engel, Bender, Dobaczewski, Nazarewicz, Stoitsov, PRC71, 34310 (2005); Cwiok, Heenen, Nazarewicz, Nature 433, 705 (2005)